organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

John Nicolson Low,^a*† Justo Cobo,^b M. Dolores López,^b Manuel Nogueras^b and Adolfo Sánchez^b

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain

+ Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland

Correspondence e-mail: jnlow111@hotmail.com

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.005 Å R factor = 0.046 wR factor = 0.094 Data-to-parameter ratio = 8.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\odot~2003$ International Union of Crystallography Printed in Great Britain – all rights reserved

Benzotriazol-1-yl 4,6-di-O-acetyl-2,3-dideoxy*a*-D-erythro-hex-2-enpyranoside

In the title compound {systematic name: [3(S)-acetyloxy-6(S)-(1H-1,2,3-benzotriazol-1-yl)-3,6-dihydro-2H-pyran-2(S)-yl]methyl acetate}, C₁₆H₁₇N₃O₅, weak C-H···O hydrogen bonds link the molecules to form a three-dimensional network consisting of linked helical chains.

Comment

The title compound, (I), was prepared as an intermediate in an attempt to optimize the stereoselective synthesis of 2-deoxyglycosyl derivatives, which are of interest as potentially biologically active compounds (see *Scheme*). There are no unusual bond distances or angles in (I). The benzotriazole moiety is planar.

There are two short intramolecular contacts in the molecule which play a part in the orientation of the acetyl substituents; these are $C14-H14\cdots O141$ [C···O = 2.690 (4) Å] and $C151-H15A\cdots O151$ [C···O = 2.670 (4) Å, see Fig. 1]. For details of these contacts, see Table 1.

In the following description, the symmetry codes are as in Table 1. Weak $C-H\cdots O$ hydrogen bonds, listed in Table 1, determine the supramolecular structure of the compound. Atom C7 in the molecule at (x, y, z) acts as a hydrogen-bond donor, *via* H7, to O141ⁱ, while C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor, *via* H6, to O151ⁱⁱ. This gives rise to a $C_2^2(13)$ (Bernstein *et al.*, 1995) helical chain which runs parallel to the *a* axis. Fig. 2 shows a stereoview of this chain. Atom C12 in the molecule at (x, y, z) acts as a hydrogen-bond donor, *via* H12, to O151ⁱⁱⁱ to form a C(9) chain which runs parallel to [101] (Fig. 3). Bonds of this type link the helical chains together, forming a three-dimensional network.

Experimental

An equimolar amount of p-toluenesulfonic acid (0.513 ml, 2.7 mmol) was added to a solution of tri-O-acetylglucal (0.743 g, 2.7 mmol) and benzotriazole (0.59 g, 2.7 mmol) in 12 ml of chloroform and heated to

Received 5 February 2003 Accepted 11 February 2003 Online 21 February 2003

Figure 1

A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

reflux overnight. 20 ml of dichloromethane was added to the resulting mixture and then washed subsequently with aqueous NaOH (2 N, 2 \times 10 ml) and brine (10 ml). The organic layer was dried over anhydrous sodium sulfate and then the solvent was removed to give 0.64 g of a complex mixture as solid foam. The title compound (0.16 g, yield 18%, m.p. 382 K) was isolated in several fractions by crystallization from ethanol at 273 K, to give crystals suitable for X-ray diffraction. Analysis calculated for C₁₆H₁₇N₃O₅: C 58.00, H 5.17, N 12.68%; found: C 58.01, H 4.90, N 12.54%.

Crystal data

$C_{16}H_{17}N_3O_5$	$D_x = 1.371 \text{ Mg m}^{-3}$
$M_r = 331.33$	Mo K α radiation
Monoclinic, P2 ₁	Cell parameters from 1883
a = 5.5167 (3) Å	reflections
b = 17.7388 (11) Å	$\theta = 3.4-27.5^{\circ}$
c = 8.2217 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 94.139 \ (3)^{\circ}$	T = 120.0 (2) K
$V = 802.47 (8) \text{ Å}^3$	Plate, colourless
Z = 2	$0.26 \times 0.24 \times 0.04 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) $T_{\min} = 0.974, \ T_{\max} = 0.996$ 6197 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.094$ S = 1.001883 reflections 219 parameters

1883 independent reflections 1341 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.071$ $\theta_{\rm max} = 27.5^\circ$ $h = -7 \rightarrow 7$ $k = -19 \rightarrow 23$ $l = -10 \rightarrow 10$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0424P)^{2}]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.19 \; {\rm e} \; {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Figure 2

A stereoview of the crystal structure, showing the helical chain running parallel to the a axis. All H atoms, except for those involved in the hydrogen bonding, have been omitted for the sake of clarity.

Figure 3

View of the C(9) chain which runs parallel to [101]. The molecule labelled with a hash (#) is at (1 + x, y, 1 + z) and that with an asterisk (*) is at (x - 1, y, z - 1). All H atoms, except for those involved in the hydrogen bonding, have been omitted for the sake of clarity.

Table 1	
---------	--

Hydrogen-bonding	geometry ([A, °]).
------------------	------------	--------	----

$D-\mathrm{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{C7-H7\cdots O141^{i}}$	0.95	2.40	3.198 (4)	141
C6−H6···O151 ⁱⁱ	0.95	2.50	3.369 (5)	152
$C12-H12\cdots O151^{iii}$	0.95	2.53	3.378 (4)	148
C14-H14···O141	1.00	2.34	2.690 (4)	99
C151-H15A···O151	0.99	2.28	2.670 (4)	102

Symmetry codes: (i) $1 - x, y - \frac{1}{2}, 2 - z$; (ii) $2 - x, y - \frac{1}{2}, 2 - z$; (iii) x - 1, y, z - 1.

H atoms were treated as riding atoms, with C-H = 0.95-1.00 Å. Friedel pairs were merged.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.